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Abstract
A long suspected duality relationship is established between representations of
an O(8) group, whose infinitesimal generators include (L = 0, S = 0, T = 1)

and (L = 0, S = 1, T = 0), two-nucleon pair operators, and those of the group
of orthogonal transformations of the spatial wavefunctions of the nucleons. The
implications of this duality in the classification of nuclear states in LST coupling
are explored for the 2s1d shell.

PACS numbers: 02.20.−a, 21.60.−n, 21.60.Fw

1. Introduction

Schematic interactions, which lead to solvable models, have had an enormous impact
on physics. The so-called pairing forces have been particularly influential in explaining
superconducting systems in terms of the tendency of fermions to form spin-zero Cooper pairs
as a result of the mutual attractive forces between them; cf, for example, Talmi’s book [1] for
an introduction to the numerous applications of pair-coupling and related seniority coupling
schemes in nuclear physics. One reason for the remarkable success of the pair-coupling models
is that they not only describe the essential physics of the pairing phenomena, but they are also
computationally tractable algebraic models with Hamiltonians that are expressible in terms of
the Lie algebras of corresponding dynamical groups. A second and equally important reason is
that a dynamical group for such a pair-coupling model is a direct product of two groups whose
representations define each other uniquely in a remarkable duality relationship. As a result,
both representations of the dual pair can be exploited to give complementary information in the
description of a model with pairing interactions [2]. In practice, this means that the irreducible
subspaces for such a model are tensor products of dual subspaces with a pairing Hamiltonian
acting in one subspace and a complementary Hamiltonian acting in the other.

Many such duality relationships are now known. The first, and best known, is the
famous Schur–Weyl duality between the representations of the symmetric and unitary groups.
Schur–Weyl duality underlies the whole representation theory of the symmetric and unitary
groups and leads to many invaluable results, e.g., for the branching rules of many subgroups
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of the unitary groups [2]. Several of these results will be used in this paper. A second
duality relationship between SU(2) quasispin and the compact symplectic groups, implicit
in the nuclear and atomic shell-model couplings schemes of Racah [3] and Flowers [4], was
uncovered by Kerman [5] and Helmers [6], in the context of nuclear pair-coupling models.

The paper of Helmers, although virtually unknown outside of nuclear physics, is
remarkable because it identifies the conditions for what we now describe as dual pairs of group
representations (defined in the following section). Helmers showed that the infinitesimal
generators of the symplectic group used by Flowers could be regarded as skew-symmetric
bilinear forms that are the invariants of another symplectic group, which he called the
commutator group of Flower’s symplectic group. He then went on to show that the Casimir
invariants of these two mutually commuting symplectic groups are linearly related. Moreover,
by consideration of the characters of their direct product, he showed that the irreducible
representations of the two symplectic groups that are coupled together are in one-to-one
correspondence and have complementary Young tableaux.

In the light of these discoveries, Flowers and Szpikowski [7] went on to show that the
diagonalization of a charge-independent pairing Hamiltonian leads to a classification of the
states of a system of neutrons and protons in jj -coupling in terms of the seniority and reduced
isotopic spin quantum numbers introduced in their earlier paper [4]. Thus, the SU(2) ∼ USp(2)

quasispin pair-coupling model for a system of either neutrons or protons was extended to an
isospin-invariant model for nucleons with an SO(5) ∼ USp(4) dynamical group, where USp
denotes a compact unitary-symplectic group.

Shortly afterwards, Flowers and Szpikowski [8] proposed an extension to the pair-coupling
model. Recognizing that the SO(5) model includes interactions only in J = 0, T = 1
pair states, they proposed an LST version of the model which admits interactions in both
S = 1, T = 0 and S = 0, T = 1 pair-coupled L = 0 states. They also showed that this model
has a spectrum generating algebra given by the Lie algebra of the group SO(8) which contains
Wigner’s U(4) supermultiplet group [9] as a subgroup. Moreover, they were able to express
their Hamiltonian in terms of the Casimir invariants of SO(8) and SU(4) and thereby derive
its spectrum. As it happened, an equivalent result had been derived earlier by Bayman [10] by
observing that the L = 0 pairing interaction is an invariant of the group SO(2l + 1). In fact, it
transpired that while Flowers and Szpikowski had discovered a dynamical group for the L = 0
pairing Hamiltonian, Bayman had discovered a complementary symmetry group. However,
a possible duality relationship between the two group structures was not investigated at that
time.

A third duality relationship was observed (again in nuclear physics) by Moshinsky
and Quesne [11] who described the relationship as complementarity. Based on results
obtained by Chaćon [12], Moshinsky and Quesne observed that the representations of the
non-compact symplectic groups Sp(n, R) and certain orthogonal groups, that occur in the
decomposition of many-particle harmonic-oscillator spaces, are dual to one another. Elegant
(albeit difficult) proofs of a more general duality theorem on multi-dimensional harmonic-
oscillator spaces were subsequently given by Kashiwara and Vergne [13] and by Howe [14]
using the sophisticated mathematics of invariant theory. As a result, the duality concept has
become widely known in mathematics in terms of Howe’s so-called dual reductive pairs. A
useful review of this subject from the mathematics perspective has been given by Howe in
[15].

Our purpose in this paper is to establish, and explore the implications of, an orthogonal–
orthogonal duality relationship based on the L = 0 Flowers–Szpikowsky model [8]. As
emphasized by Evans [16] and Dussel et al [17], this model, while more complicated than
the standard J = 0 pairing model, is often more useful and more realistic, because it allows
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pairing in the spatial degrees of freedom regardless of the spin and isospin of the pair. Several
papers [16–22] have explored the spectra and properties of the Flowers–Szpikowsky model
in terms of its SO(8) algebraic structure. For example, Pang [19] gave expressions for matrix
elements of the SO(8) Lie algebra in irreps of seniority zero and one. These expressions
were used by Evans et al [16] to compute the spectra for a 12-particle seniority-zero irrep for
different S = 0, T = 1 and S = 1, T = 0 pairing strengths. A more general Hamiltonian,
quadratic in the SO(8) algebra, was used by Engel et al [20] to study Gamow–Teller strengths
and double β decay.

Of particular relevance to the present investigation is the paper of Kota and Alcarás [22]
which focuses on chains of Lie algebras which pairwise commute with those of SO(8); the
Kota–Alcarás paper appeared recently (during the course of this investigation) and we are not
aware of any earlier publication that goes as far. Kota and Alcarás observed, for example,
that the subset of U(N) one-body operators that commute with the operators of the SO(8)

Lie algebra, in the space of any number of nucleons in N = ∑
i (2li + 1) single-particle

spatial states, is the SO(N) Lie algebra. Moreover, they showed that the values of the Casimir
operators for the irreps of these two algebras, that occur in combination, are linearly related, as
were those of the symplectic algebras considered by Helmers. This goes a long way towards
establishing the duality of the O(8) and O(N) groups which share their Lie algebras with
those of SO(8) and SO(N).

It is shown in the following section that the groups O(8) and O(N) do indeed have dual
representations on the space of many fermions occupying N spatial single-particle states. It
should be emphasized, however, that to show this it is not sufficient to consider only the Lie
algebras of the groups in question. This is important because, while the group O(N) and its
SO(N) ⊂ O(N) subgroup share a common Lie algebra, they are distinct groups. Moreover,
for even values of N, an O(N) irrep may restrict to a sum of two SO(N) irreps. (Recall that
SO(N) is the subgroup of elements of O(N) with unit determinant whereas, in a general O(N)

irrep, det(g) can take the value ±1. Thus, O(N) irreps are distinguished by an additional
O(1) quantum number that is not required for SO(N).)

An identification of pairs of groups with dual representations, one group acting on the
spin–isospin states and the other on the spatial states of many nucleons, is of considerable
value in solving shell-model problems. For example, the dual representations of the groups
O(8) and O(N) imply that if H = H1 + H2 is a Hamiltonian with H1 a polynomial in the
O(8) Lie algebra and H2 a polynomial in the O(N) Lie algebra, then O(8) is a dynamical
group for H1 and a symmetry group for H2 and, conversely, O(N) is a dynamical group for
H2 and a symmetry group for H1. Subgroup chains of groups with dual representations are
even more useful. For the current model, we have the subgroup chains

O(8) ⊃ U(4) ⊃ SU(2)S × SU(2)T , (1)

U(N) ⊃ O(N) ⊃ SO(3)L. (2)

The remarkable fact is that because of the duality relationships between O(8) and O(N) and
between U(4) and U(N) it is possible to construct basis states for the Fock space F that
simultaneously reduce both subgroup chains, in spite of the fact that the groups O(8) and
U(N) do not commute with one another. Such related subgroup chains are conveniently
described as dual subgroup chains.

2. Dual pairs of group representations

Definition 1. Two groups G1 and G2 are said to have dual representations on a space F if
the following conditions hold: (i) the actions of the two groups commute with one another;
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(ii) the representation of the direct product group G1 × G2 on F is fully reducible and its
decomposition is multiplicity free; (iii) a particular irrep of G1 only occurs in combination
with a single uniquely defined irrep of G2 and vice versa.

In the following, we consider F to be a many-nucleon Fock space for which the nucleon
creation and annihilation operators are indexed by a double set of labels

{
a
†
σ i, a

σ i
}
, where

i = 1, . . . , N indexes N spatial indices and σ indexes the four spin–isopin states of a nucleon.
These operators obey the standard fermion anti-commutation relations{

aσi, a
†
τj

} = δσ
τ δi

j ,
{
a
†
σ i, a

†
τj

} = {aσi, aτj } = 0. (3)

In this section, we first review the well-known unitary–unitary duality on this space and
then derive an orthogonal–orthogonal duality; we are not aware that the latter has previously
been substantiated.

2.1. Unitary–unitary duality

The Fock space F carries a reducible representation of a direct product group, U(4) × U(N),
whose infinitesimal generators are given by Hermitian linear combinations of the operators:

Ĉ(4)
στ =

N∑
i

a
†
σ ia

τi, Ĉ
(N)
ij =

4∑
σ=1

a
†
σ ia

σj . (4)

The group U(N) is the group of one-body unitary transformations of the spatial wavefunctions
and U(4) is Wigner’s supermultiplet group of one-body unitary transformations of the
combined spin–isospin wavefunctions. An irrep of U(N) carried by an A-nucleon subspace
of F is labelled by an ordered partition {λ} = {λ1λ2 · · · λN } of A, defined as a set of positive
integers which add to A and satisfy the inequalities

λ1 � λ2 � · · · � λN � 0. (5)

An irrep of U(4) carried by an A-nucleon subspace of F is similarly labelled by an ordered
partition {µ} = {µ1µ2µ3µ4} of A, defined as a set of positive integers which likewise add to
A and satisfy the inequalities

µ1 � µ2 � µ3 � µ4 � 0. (6)

As a result of the Schur–Weyl duality theorem, the total antisymmetry of the many-
fermion wavefunctions implies that the states of F which belong to a U(N) irrep {λ} must
simultaneously belong to the U(4) irrep {µ} = {λ̃} conjugate to {λ}. The Young diagrams
associated with conjugate partitions {λ̃} and {λ} transform into one another under reflection
about a diagonal through the top-left corner; in other words, the number of boxes in the
columns of the Young diagram for {λ̃} are equal to the number of boxes in the corresponding
rows of the diagram for {λ}. The unitary–unitary duality theorem further states that the Fock
space F carries a reducible representation T of the group U(4) × U(N) given by the direct
sum of irreps

T =
4N⊕
A=0

⊕
λ�A

{λ̃} × {λ}, (7)

where λ�A signifies that {λ} is an ordered partition of A. The partitions appearing in equation
(7) are restricted by the condition that {λ} and {λ̃} have at most N and 4 parts, respectively;
this means that λ̃1 � N and λ1 � 4. It follows that F is a direct sum of A-nucleon Hilbert
spaces, F = ⊕4N

A=0 H
A, with

H
A =

⊕
λ�A

H
{λ}, (8)
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where H
{λ} is the carrier space for the U(4) × U(N) irrep {λ̃} × {λ}. The Hilbert space H

{λ}

is uniquely characterized by the state

|λ〉 = (
a
†
11a

†
21 · · · a†

λ11

)(
a
†
12a

†
22 · · · a†

λ22

) · · · (a†
1pa

†
2p · · · a†

λpp

)|0〉, (9)

which is simultaneously of highest weight relative to both U(4) and U(N); p = λ̃1 is the
so-called depth of the partition {λ}, i.e., the number of parts of {λ}.

2.2. Orthogonal–orthogonal duality

The group of complex-linear transformations of the fermion operators of the form

a
†
σ i →

∑
τj

(
a
†
τjuτj,σ i + aτj vτj,σ i

)
, (10)

aσi →
∑
τj

(
a
†
τj v

∗
τj,σ i + aτju∗

τj,σ i

)
, (11)

that preserve the fermion commutation relations of equation (3) is the orthogonal group
O(8N). This will be shown explicitly in [2]. The Lie algebra of this group is the so-called
fermion-pair algebra. Its complex extension is spanned by the operators

a
†
σ ia

†
τj , aσ iaτj , 1

2

(
a
†
σ ia

τj − aτja
†
σ i

) = a
†
σ ia

τj − 1
2δσ

τ δi
j . (12)

We show in the following that this O(8N) group has a pair of O(8) and O(N) subgroups with
dual representations on the Fock space F.

The subgroup O(N) is defined as the set of all U(N) ⊂ O(8N) transformations that
leave the scalar products

a†
σ · a†

τ =
∑

i

a
†
σ ia

†
τ ı̄ = −a†

τ · a†
σ , σ, τ = 1, . . . , 4 (13)

invariant, where ı̄ (defined below) is an involution of the indices in which i → ı̄ and ı̄ → i.
The subgroup O(8) is defined as the commutant of O(N) in O(8N), i.e., the set of all O(8N)

transformations that commute with those of O(N).
A natural choice of the involution i → ı̄ is given by time reversal. Let i index the orbital

angular momentum quantum numbers (limi) of single-particle states. For example, if l1 = 0
and l2 = 1 then a possible enumeration of the states is i = 1 ≡ (0, 0), i = 2 ≡ (1,−1), i =
3 ≡ (1, 0) and i = 4 ≡ (1, 1). A standard definition of time reversal is then given by setting

a
†
σ ı̄ = (−1)li+mi a

†
σ li ,−mi

. (14)

With a†
σ = {a†

σ limi
;mi = −li , . . . , li} and a†

τ regarded as N-component vectors, the scalar
product

Âστ ≡ a†
σ · a†

τ =
∑

li

li∑
mi=−li

√
2li + 1(li ,−mi, limi |00)a

†
σ limi

a
†
τ li ,−mi

(15)

is then the creation operator of an angular-momentum-zero (L = 0) coupled pair.
For a single value l, N = 2l +1 is odd. One of the indices i is then associated with mi = 0,

the others occur in time-reverse pairs (i, ı̄) with mı̄ = −mi for mi 	= 0, and Âστ becomes∑
i a

†
σ ia

†
τ ı̄ . However, when there is a multiplicity of l values, N = ∑k

i=1(2li + 1) may be even
or odd and there is more than one single-particle state with mi = 0. We next show that, for
N even, there exists always a basis of single-nucleon states all occurring in time-reverse pairs
and, for N odd, there exists a basis with just one unpaired single-nucleon state.
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Suppose that mi = mj = 0, for some particular values of i and j , and that

a
†
σ ı̄ = a

†
σ i, a

†
σ ̄ = a

†
σj . (16)

The creation operators a
†
σ i and a

†
σj can then be replaced by the linear combinations

α
†
σ i = 1√

2

(
a
†
σ i + ia†

σj

)
, α

†
σj = 1√

2

(
a
†
σ i − ia†

σj

)
. (17)

With the inclusion of complex conjugation of scalar operators in the definition of time reversal,
the time reverse of the new operators is then given by

α
†
σ ı̄ = 1√

2

(
a
†
σ ı̄ − ia†

σ ̄

) = α
†
σj , α

†
σ ̄ = 1√

2

(
a
†
σ ı̄ + ia†

σ ̄

) = α
†
σ i . (18)

The new operators satisfy the desired anti-commutation relations{
ασi, α

†
τj

} = δσ
τ δi

j ,
{
α
†
σ i, α

†
τj

} = {ασi, ατj } = 0. (19)

Moreover,

α
†
σ iα

†
τ ı̄ + α

†
σjα

†
τ ̄ = a

†
σ ia

†
τ i + a

†
σj a

†
τj (20)

as required. Thus, the unpaired creation operators a
†
σ i and a

†
σj have been transformed into a

time-reverse pair α
†
σ i and α

†
σ ı̄ = α

†
σj . Similarly, if the initial mi = mj = 0 creation operators

satisfy

a
†
σ ı̄ = a

†
σ i, a

†
σ ̄ = −a

†
σj , (21)

then the combinations

α
†
σ i = 1√

2

(
a
†
σ i + a

†
σj

)
, α

†
σj = 1√

2

(
a
†
σ i − a

†
σj

)
(22)

give a time-reverse pair. Thus, without loss of generality, it may be assumed that, whenever N
is even, there are no unpaired operators while, whenever N is odd, there is just one unpaired
operator. In the following, we choose to index states such that ı̄ = N + 1 − i for all
i < (N + 1)/2 and that, when N is odd, the index i = ı̄ = (N + 1)/2 is the unpaired index.

As identified above, a set of infinitesimal generators of the group U(N) is given by the
operators

{
Ĉ

(N)
ij

}
of equation (4). Thus, the complex extension of the O(N) ⊂ U(N) Lie

algebra is spanned by linear combinations of these operators which commute with the {Âστ }
scalars, e.g., the set

Âij = Ĉ
(N)
ī − Ĉ

(N)
j ı̄ , (23)

Ĉij = Ĉ
(N)
ij − Ĉ

(N)
̄ ı̄ , (24)

B̂ij = Ĉ
(N)
̄ i − Ĉ

(N)
ı̄j , (25)

with i and j restricted to the interval [1, . . . , (N + 1)/2] if N is odd and to [1, . . . , N/2] if N
is even. These operators are shown for N = 4 and 5 on the SO(4) and SO(5) root diagrams
in figure 1. On the other hand, the Lie algebra of O(8), the commutant of O(N) in O(8N),
comprises all O(N) scalars in the fermion-pair Lie algebra and is spanned by the operators

Âστ =
∑

i

a
†
σ ia

†
τ ı̄ , (26)

B̂στ =
∑

i

aτ ı̄aσ i, (27)
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Â21

Â23 Â13

Ĉ12Ĉ21

Ĉ11 Ĉ22

B̂13 B̂23

B̂21

Â21

Ĉ12Ĉ21

Ĉ11 Ĉ22

B̂21

(a)  so(4) (b)  so(5)

Figure 1. The infinitesimal generators of equations (23)–(25), for N = 4 and 5, as root vectors
for SO(4) and SO(5), respectively.

Ĉστ =
∑

i

a
†
σ ia

τi − N

2
δστ = Ĉ(4)

στ − N

2
δστ . (28)

(Note that the Lie algebras of O(N) and O(8) are those of their SO(N) and SO(8) subgroups.)
In proving the duality between O(8) and O(N), it is helpful to visualize the situation by

means of a schematic diagram. Each row of lines in figure 2 represents a Hilbert space H
{λ(k)}

for an Ak-nucleon U(4) × U(N) irrep {λ(k)} with {λ(k)} � Ak and Ak increasing in steps of
two in ascending order, i.e., Ak+1 = Ak + 2. The lines in a given row represent the irreducible

U(4) × O(N) subspaces H
{λ̃(k)}
[κ(i)] ⊂ H

{λ(k)}, in the decomposition

H
{λ(k)} =

⊕
i

cλ(k)

κ(i) H
{λ̃(k)}
[κ(i)] (29)

where
⊕

denotes a direct sum of subspaces for U(4) × O(N) irreps {λ̃(k)} × [κ(i)] with
multiplicity cλ(k)

κ(i) and the sum runs over the O(N) irrep labels [κ] given by the branching rule

U(N) ↓ O(N) : {λ} ↓
∑

κ

cλ
κ [κ]. (30)

Note that an irrep [κ] may appear in the expansion of different {λ}. Lines representing
U(4) × O(N) subspaces with a common O(N) label [κ] are arranged, in the diagram, into
columns.

We now claim that all the states in the Fock space F = ⊕
H

A which belong to equivalent
[κ] irreps of O(N) span an O(8) × O(N) irrep, i.e., that all the lines in a column (cf figure 2)
represent U(4) × O(N) subspaces of an O(8) × O(N) irrep. The content of this claim is
clarified in figure 3 for N = 2.

In validating this claim, it is convenient to label an O(8) irrep by
[

1
2N(ν)

]
. This (non-

standard) notation defines an O(8) irrep in terms of a lowest weight state which satisfies the
equations

Ĉστ

∣∣[ 1
2N(ν)

]; l.wt.
〉 = 0, for 1 � σ < τ � 4, (31)

B̂στ

∣∣[ 1
2N(ν)

]; l.wt.
〉 = 0, for 1 � σ � τ � 4, (32)

Ĉσσ

∣∣[ 1
2N(ν)

]; l.wt.
〉 = (

νσ − 1
2N

)∣∣[ 1
2N(ν)

]; l.wt.
〉
, for 1 � σ � 4, (33)

where ν = (ν1, ν2, ν3, ν4) is a U(4) weight defined by the operators Ĉ(4)
σσ , cf equation (4). With

this notation, we proceed to establish the O(8) ↔ O(N) duality relationship by showing that
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λ̃(1) [κ(1)]

{λ̃(2)} × [κ(1)] {λ̃(2)} × [κ(2)]

{λ̃(3)} × [κ(1)] {λ̃(3)} × [κ(2)] {λ̃(3)} × [κ(3)]

{λ̃(4)} × [κ(1)] {λ̃(4)} × [κ(2)] {λ̃(4)} × [κ(3)]

{λ̃(3)} × [κ(4)]

{λ̃(4)} × [κ(4)]

{λ̃(5)} × [κ(4)]{λ̃(5)} × [κ(1)] {λ̃(5)} × [κ(2)] {λ̃(5)} × [κ(3)] {λ̃(5)} × [κ(5)]

H
{λ(1)}

H
{λ(2)}

H
{λ(3)}

H
{λ(4)}

H
{λ(5)}

Figure 2. A schematic representation of the decomposition of a selected set of H
{λ(k)} spaces into

U(4) × O(N) subspaces. Each line represents a multiplicity cλ(k)

κ(i) � 1, of U(4) × O(N) irreps

equivalent to {λ̃(k)} × [κ(i)] in the corresponding H
{λ(k)}.

(κ̃) [0] [12] [14] [12] [2] [0]

A = 0

A = 2

A = 4

A = 6

A = 8

{0}

{2} {12}

{4} 31} {22}

{42} {

{

32}

{42}

{λ} {λ} {λ}

{0} × [0]

{12} × [0]

{14} × [0]

{2212} × [0]

{24} × [0]

{12} × [2]

{14} × [2]

{2212} × [2]

{14} × [4]

{2} × [2]

{212} × [2]

{23} × [2]

{212} × [12] {22} × [0]

Figure 3. The spectrum of U(4)×O(N) irreps, {λ̃}× [κ], for N = 2. The set of all U(4)×O(N)

irreps with common [κ] is contained in a single O(8) × O(N) irrep [1(κ̃)] × [κ].

every O(8) irrep
[

1
2N(ν)

]
is associated with a column of U(4) ×O(N) irreps and is uniquely

defined by the O(N) label [κ] for the column. It then follows that (ν) = (κ̃) and that there is
a dual pair of subgroup chains with irrep labels given by

O(8) ⊃ U(4), U(N) ⊃ O(N)[
1
2N(κ̃)

] {λ̃} {λ} [κ]
. (34)

Our strategy is to consider first the highest weight states {|λ̃κ〉} for the U(4)×O(N) subspaces
and subsequently identify the subset of these states that are also of O(8) lowest weight. To be
a U(4) highest weight state |λ̃κ〉 is required to satisfy the equations

Ĉ(4)
στ |λ̃κ〉 =

{
0 for 1 � σ < τ � 4,

λ̃σ |λ̃κ〉 for 1 � σ = τ � 4.
(35)

Note that the special state |λ〉, defined by equation (9) to be a U(N) highest weight state, also
satisfies the equations

Ĉij |λ〉 = 0, 0 < i < j, (36)
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Âij |λ〉 = 0, ∀i, j � N/2, (37)

which means that it is also a highest weight state for O(N) and SO(N). The components of
the SO(N) weight, [K(λ)], for this state |λ〉 are given by the eigenvalues of the Cartan operators
{Ĉii}:

K
(λ)
i |λ〉 = Ĉii |λ〉 = (

Ĉ
(N)
ii − Ĉ

(N)
ı̄ı̄

)|λ〉 = (λi − λı̄

)|λ〉, i � N/2, (38)

i.e., K
(λ)
i = λi − λı̄ . The corresponding O(N) irrep [κ(λ)] with highest weight state |λ〉 is

defined below. The important point, for the moment, is to note that the state |λ〉 ≡ |λ̃κ(λ)〉
defines an irreducible U(4)×O(N) subspace H

{λ̃}
[κ(λ)] ⊂ H

{λ}, which, in the diagram of figure 2,

is associated with the line at the far right of the row for H
{λ}.

We now claim that only a state, |λ〉, in the set of U(4) × U(N) highest weight states,
can be both an O(N) highest and an O(8) lowest weight state. This claim is based on the
observation that any state |λ̃κ〉 of U(4) and O(N) highest weight in the space H

{λ}, that is not
also a U(N) highest weight state, is of the form

|λ̃κ〉 = [Â ⊗ |λ̃′κ〉]{λ̃}
U(4)h.wt., (39)

for some λ′, where the bracket signifies a U(4) coupling {12} ⊗ {λ̃′} → {λ̃}. This follows
because the {Âστ } operators are O(8) raising operators; hence, none of the states {|λ̃κ〉}
with κ 	= κ(λ) can be O(8) lowest weight states. Thus, we need only look among the set
{|λ〉 ≡ |λ̃κ(λ)〉}, to find states in H

A that are simultaneously of lowest weight in O(8) and
highest weight in O(N).

To be an O(8) lowest weight state, |λ〉 has to satisfy the condition

B̂στ |λ〉 = 0, ∀σ < τ. (40)

First observe that[
B̂στ , a

†
ρi

] = δσρa
τ ı̄ − δτρa

σ ı̄ . (41)

With the expression for |λ〉, given by equation (9), reexpressed (to within a ± sign) in the form

|λ〉 = [(
a
†
11 · · · a†

1λ̃1

)(
a
†
21 · · · a†

2λ̃2

) · · · ]|0〉, (42)

it follows that

B̂στ |λ〉 =
∑

i

[(
a
†
11 · · ·a†

1λ̃1

)· · ·(a†
σ1 · · ·a†

σ i−1a
τ ı̄a

†
σ i+1 · · ·a†

σ λ̃σ

)· · ·(a†
τ1 · · ·a†

τ ı̄ · · ·a†
τ λ̃τ

)· · ·]|0〉

−
∑

i

[(
a
†
11 · · ·a†

1λ̃1

)· · ·(a†
σ1 · · ·a†

σ ı̄ · · ·a†
σ λ̃σ

)· · ·(a†
τ1 · · ·a†

τ i−1a
σ ı̄a

†
τ i+1 · · ·a†

τ λ̃τ

)· · ·]|0〉

= ±
∑

i

[(
a
†
11 · · ·a†

1b̃1

)· · ·(a†
σ1 · · ·a†

σ i−1a
†
σ i+1 · · ·a†

σ λ̃σ

)· · ·
× (

a
†
τ1 · · ·a†

τ ı̄−1a
†
τ ı̄+1 · · ·a†

τ b̃τ

)· · ·]aτ ı̄a
†
τ ı̄ |0〉

∓
∑

i

[(
a
†
11 · · ·a†

1κ̃1

)· · ·(a†
σ1 · · ·a†

σ ı̄−1a
†
σ ı̄+1 · · ·a†

σ κ̃σ

)· · ·
× (

a
†
τ1 · · ·a†

τ i−1a
†
τ i+1 · · ·a†

τ κ̃τ

)· · ·]a†
σ ı̄a

σ ı̄ |0〉. (43)

Each term in the second sum of equation (43) clearly vanishes. The remaining terms are all
linearly independent and so B̂στ |λ〉 will be non-zero if and only if there is a value of i for
which i � λ̃σ and ı̄ = N + 1 − i � λ̃τ , i.e., if and only if λ̃σ + λ̃τ � N + 1, for some σ and
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τ . The largest value of λ̃σ + λ̃τ is λ̃1 + λ̃2. Thus, the condition that B̂στ |λ〉 = 0 and |λ〉 is an
O(8) lowest weight state is that

λ̃1 + λ̃2 � N. (44)

Thus, we have shown that every state in the Fock space F that is simultaneously a lowest
weight state of an O(8) irrep and a highest weight state of an O(N) irrep is also a U(4)×U(N)

highest weight state |λ〉 with λ̃1 +λ̃2 � N . Conversely, we have shown that every U(4)×U(N)

highest weight state |λ〉 with λ̃1 + λ̃2 � N is simultaneously a lowest weight state of an O(8)

irrep and a highest weight state of an O(N) irrep. The unitary–unitary duality relationship
(7) implies that each state |λ〉 is uniquely defined, without multiplicity, by the partition {λ}.
To prove the duality relationship between the O(8) and O(N) irreps, it remains to show that
different {λ}, with λ̃1 + λ̃2 � N , define different O(8) and different O(N) irreps (cf condition
(iii) of the definition of dual representations).

Note that within the subset of U(N) highest weights {λ} with λ̃1 + λ̃2 � N there are
pairs of distinct U(N) highest weights (λ, λ′) for which K(λ) = K(λ′), e.g., the U(2) irreps
{0} and {12}. Recall that the U(N) highest weight state |λ〉 has SO(N) weight [K(λ)] with
K

(λ)
i = λi −λı̄ . However, it is stressed that the labels for an SO(N) irrep alone are not generally

sufficient to distinguish different O(N) irreps. Thus, in a notation introduced by Murnaghan
[23], an asterisk is used to distinguish O(N) irreps which correspond to the same SO(N ) irrep
[K] but differ by a factor det(g) = ±1 in the representation of an element g ∈ O(N). (Note
that, because SO(N) is the subgroup of elements in O(N) for which det(g) = 1, the two irreps
[K] and [K]∗ become equivalent on restriction to SO(N).)

We now explain the meaning of the asterisk in the present context and show that if one
member of a (λ, λ′) pair, for which K(λ) = K(λ′) but λ 	= λ′, defines an O(N) irrep [K], then the
other member defines the irrep [K]∗. We start from the observation that [K(λ)] = [λ] whenever
{λ} is a U(N) irrep for which λ̃1 � N/2 and that [K(λ)] = [K(λ′)] when {λ′} is the related U(N)

irrep defined such that λ̃′
1 = N − λ̃1 and λ̃′

i = λ̃i for i > 1.
First observe that the group O(N) has two one-dimensional irreps: one spanned, for

example, by the fermion vacuum state |0〉 and one spanned by the state

|1N 〉 = (
a
†
11 · · · a†

1N

)|0〉. (45)

The former is the identity irrep and the latter is the irrep in which an element g ∈ O(N)

is represented by its determinant det(g). These two O(N) irreps are labelled [0] and [0]*,
respectively. Next observe that a state

|1n〉 = (
a
†
11 · · · a†

1n

)|0〉 (46)

with n < N can be reexpressed, to within a ± sign, as

|1n〉 = ±(a11̄ · · · a1m̄)|1N 〉, (47)

where m = N − n. Moreover, because the operators
∑

i a
†
1ia

†
1ı̄ and

∑
i a

†
1ı̄ a

1ı̄ are both
O(N) scalars, the operators a1ı̄ and a

†
1i transform in the same way under O(N). It follows

that the operator (a11̄ · · · a1m̄) is the highest weight component of a [1m] tensor operator.
Thus, when n > N/2, the O(N) irrep with highest weight state |1n〉 is the irrep [1N−n]∗.
Similar considerations apply to O(N) irreps with highest weight states |λ〉 and |λ′〉 for which
λ̃1 + λ̃2 � N and λ̃′

1 + λ̃′
2 � N but while λ̃1 � N/2, λ̃′

1 > N/2. By expressing the state |λ′〉
in the form

|λ′〉 = ±(a11̄ · · · a1m̄)
[(

a
†
21 · · · a†

2λ̃′
2

) · · · ]|1N 〉, (48)

with m = N − λ̃′
1, it follows that the O(N) irrep with highest weight state |λ′〉 is the irrep

[K(λ)]∗ with λ̃′
1 = N − λ̃1 and λ̃′

i = λ̃i for i > 1. However, for present purposes, it will
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be convenient to follow Littlewood’s convention [24], rather than that of Murnaghan, and
label an O(N) irrep, whose highest weight state is also a U(N) highest weight state |λ〉 with
λ̃1 + λ̃2 � N , simply by [λ] (even if λ̃1 > N/2) and avoid the use of asterisks.

Thus, we have substantiated the O(8) × O(N) duality relationship and, moreover,
determined that if � is the reducible representation of O(8) × O(N) carried by the Fock
space F, then

� =
4N⊕
A=0

⊕
κ�A

[
1
2N(κ̃)

] × [κ], (49)

where κ � A is restricted by the conditions κ1 � 4 and κ̃1 + κ̃2 � N and it is understood
that when κ̃1 > N/2 then [κ] ≡ [K]∗ with K̃1 = N − κ̃1 and K̃i = κ̃i for i > 1. (The
parallel complication does not arise for the O(8) irreps labelled here by

[
1
2N(κ̃)

]
because of

the restriction κ1 � 4.)

2.3. The duality relationship between the U(N) ↓ O(N) and O(8) ↓ U(4) branching rules

A dual pair of subgroup chains implies a useful relationship between the branching rules
of groups in the paired chains. In the present situation, the reduction of the U(4) × U(N)

representation T = ⊕4N
A=0

⊕
λ�A{λ̃} × {λ}, given by equation (7), and the reduction of the

O(8)×O(N) representation � = ⊕4N
A=0

⊕
κ�A

(
1
2N [κ̃]

)× [κ], given by equation (49), imply
that the U(N) ↓ O(N) and O(8) ↓ U(4) branching rules are related.

If the U(N) ↓ O(N) branching rule is expressed by a set of Rλκ coefficients

U(N) ↓ O(N) : {λ} ↓
⊕

κ

Rλκ [κ], (50)

then the U(4) × U(N) representation T restricts to the U(4) × O(N) representation

U(4) × U(N) ↓ U(4) × O(N) : T ↓
4N⊕
A=0

⊕
λ�A

⊕
κ

Rλκ{λ̃} × [κ]. (51)

Similarly, if the O(8) ↓ U(4) branching rule is expressed by

O(8) ↓ U(4) :
(

1
2N [κ̃]

) ↓
⊕

λ

Rλκ{λ̃}, (52)

then the O(8) × O(N) representation � restricts to the U(4) × O(N) representation

O(8) × O(N) ↓ U(4) × O(N) : � ↓
4N⊕
A=0

⊕
λ�A

⊕
κ

Rλκ{λ̃} × [κ]. (53)

Because the representations T and � share the same Hilbert space, their restrictions to their
identical U(4) × O(N) subgroup must be the same. Thus, it follows that the coefficients of
the U(N) ↓ O(N) and O(8) ↓ U(4) branching rules are identical, i.e.,

Rλκ = Rλκ. (54)

The U(N) ↓ O(N) branching rules are well known and given by King [26]. Table 1
gives the Rλκ coefficients for the U(3) irreps for which the duality relationship (54) applies,
i.e., those for which λ1 � 4. Note that, in general, two U(N) irreps {λ(1)} and {λ(2)} restrict
to the same O(N) representation whenever λ

(1)
i + λ

(2)
N+1−i = k (with k even) for all i = 1 to

N. Thus, for example (cf table 1), the U(3) irreps {2}, {22}, {422} and {4, 22} all branch to the
same sum of O(3) irreps. Tables of O(8) ↓ U(4) branching rules for N � 6 are given in the
appendix.
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Table 1. The non-zero Rλκ coefficients of the U(3) ↓ O(3) branching rule.

{λ}
{0} {2} {12} {4} {31} {22} {212} {412}

[κ] {42} {321} {23}{43} {422} {432} {42} {431} {422} {322} {32}
[0] 1 1 1 1 1 1
[2] 1 1 1 1 2 1
[12] ≡ [0]∗ 1 1 1 1 1
[4] 1 1
[31] ≡ [3]∗ 1 1 1

{λ}
{1} {3} {21} {13} {41} {32} {312} {221}

[κ] {423} {421} {432} {33} {43} {421} {321} {322}
[1] 1 1 1 1 1 1
[3] 1 1 1
[21] ≡ [2]∗ 1 1 1 1
[13] 1 1
[41] ≡ [4]∗ 1

3. An application to the nuclear 2s1d shell in LST -coupling

Nuclear shell-model calculations are most commonly carried out in a jj -coupled basis.
However, for many purposes there are considerable advantages to an LST -coupled basis.
An LST -coupled basis is any basis that reduces the subgroup chain

U(4) × U(N) ⊃ SU(2)T × SU(2)S × SO(3)L ⊃ SU(2)J , (55)

where SO(3)L is the orbital angular momentum group, SU(2)S and SU(2)T are respectively the
spin and isospin subgroups of the Wigner supermultiplet group U(4), and SU(2)J is the total
orbital-angular-momentum-plus-spin subgroup of SO(3)L ×SU(2)S . (In regarding SU(2)J as
a subgroup of SO(3)L ×SU(2)S we use the standard device of extending SO(3)L to its SU(2)L
covering group.) However, there are several possibilities within this skeletal framework. For
example, for the 2s1d shell, for which N = 6, there are three more detailed coupling schemes
given by classifying basis states by the quantum numbers of the subgroups chains:

U(6) ⊃ U(3) ⊃ SU(3) ⊃ SO(3)

{�} {λ1λ2λ3} (λµ) L
, (56)

U(6) ⊃ O(6) ⊃ O(5) ⊃ SO(3)

{�} [κ] [v] L
, (57)

U(6) ⊃ U(5) ⊃ O(5) ⊃ SO(3)

{�} {µ} [v] L
, (58)

where we now label irreps by the symbols given below each group.
It is notable that these subgroup chains are the same as those of the interacting boson

model. However, because they are now used to classify the states of an interacting fermion
system, their physical content is different. Moreover, the U(6) irreps {�} that appear in the
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classification of the nuclear 2s1d shell are those whose conjugates, {�̃}, define U(4) irreps,
i.e., {�} is a partition of maximum length 4 and maximum depth 6.

As we now show, each subgroup chain diagonalizes a two-body Hamiltonian of physical
interest.

3.1. The U(3) chain

The U(3) chain of equation (56) gives the basis of SU(3)-coupled states used by Elliott
[27] in his model of nuclear rotational states. This chain diagonalizes the so-called Q̂ · Q̂

interaction which is given, to within a term in the square of the SO(3) angular momentum, by
the (arbitrarily normalized) SU(3) Casimir operator

ĈSU3 = 1
4

[
Q̂ · Q̂ + 3L̂ · L̂

]
. (59)

The value of the Casimir operator for an SU(3) irrep is given (with this normalization) by

〈(λµ)|ĈSU3|(λµ)〉 = λ2 + λµ + µ2 + 3(λ + µ). (60)

On restriction to U(3), the U(6) irrep {1} restricts to the U(3) irrep {2}. More generally,
the U(6) ↓ U(3) branching rule is given by the plethysm

U(6) ↓ U(3) : {�} ↓ {2} p© {�}. (61)

The further restriction to SU(3) is given by

U(3) ↓ SU(3) : {λ1λ2λ3} ↓ (λ1 − λ2, λ2 − λ3). (62)

The SU(3) irreps contained in the U(6) irreps that occur in the 2s1d shell have been given by
Elliott [27].

The spectra of the Hamiltonian

Ĥ = −ĈSU3 (63)

for 2s1d-shell nuclei with supermultiplet symmetry {n4} for n = 1, . . . , 6 are shown in figure 4.
The SU(3) ↓ SO(3) branching rule [27] is given by

SU(3) ↓ SO(3) : (λ, µ) ↓ L = K,K + 1, . . . , K + λ, for K 	= 0,

= λ, λ − 2, . . . , 1 or 0, for K = 0, (64)

K = µ,µ − 2, . . . , 1 or 0,

Thus, it is straightforward to include the L-dependence of the energy-level spectra for a
Hamiltonian Ĥ = −χQ̂ · Q̂ or, more generally, to give the spectrum of many rotor-like bands
for a Hamiltonian of the form

Ĥ = χ1ĈSU3 + χ2L̂ · L̂. (65)

3.2. The O(6) chain

In light of the duality between the U(N) ↓ O(N) and O(8) ⊃ U(4) subgroup chains, the
O(6) chain of equation (57) gives rise to a coupling scheme, which diagonalizes an L = 0
pairing interaction. In contrast to the J = 0 pairing interaction in a multi-j -shell configuration,
which gives rise to generalized seniority, the L = 0 pairing interaction acts in multi-l-shell
configurations and preserves supermultiplet symmetry. It is expressed in terms of the dual
O(8) raising and lowering operators of equation (26) and (27) by

V̂ P
O6 =

∑
σ,τ

Âστ B̂στ (66)

and is expressed in terms of the U(4) and O(8) Casimir operators as follows.
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Figure 4. The energy-level spectra (relative to the ground-state energy) of SU(3) multiplets with
{n4} supermultiplet symmetry, for n = 1, . . . , 5, in the 2s1d shell.

The U(4) Lie algebra, spanned by the operators {Ĉστ } given in equation (28), has Casimir
operator

ĈU4 =
∑

σ

Ĉσσ Ĉσσ +
∑
σ 	=τ

Ĉστ Ĉτσ , (67)

which, in an irrep with highest weight {X} whose components are the eigenvalues of the
weight operators {Ĉσσ }, takes the value

〈{X}|ĈU4|{X}〉 =
∑

σ

Xσ (Xσ + 5 − 2σ). (68)

The O(8) Lie algebra with basis defined as in equations (26)–(28) has Casimir operator

ĈO8 = ĈU4 +
∑
σ<τ

(Âστ B̂στ + B̂στ Âστ ), (69)

which, for an irrep with highest weight [Y ] whose components are eigenvalues of the weight
operators {Ĉσσ }, takes the value

〈[Y ]|ĈO8|[Y ]〉 =
∑

σ

Yσ (Yσ + 8 − 2σ). (70)
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Figure 5. The energy-level spectra (relative to the ground-state energy) of the Hamiltonian V̂ P
O6

for states of {n4} supermultiplet symmetry. Each horizontal energy level gives the degenerate
excitation energy of a multiplet of states of an O(6) irrep [κ].

It follows that the O(6) pairing interaction can be expressed as

V̂ P
O6 = ĈO8 − ĈU4 + 3

∑
σ

Ĉσσ , (71)

and has a spectrum given by

〈{�}[κ]|V̂ P
O6|{�}[κ]〉 =

∑
σ

[Yσ (κ)(Yσ (κ) + 8 − 2σ) − Xσ (�)(Xσ (�) + 2 − 2σ)]. (72)

Now, for a U(6) irrep {�}, the dual irrep {X(�)} of the U(4) ⊂ O(8) group with infinitesimal
generators {Ĉστ = Ĉ(4)

στ − 3δστ } has highest weight components

Xσ (�) = �̃σ − 3. (73)

Likewise, for an O(6) irrep [κ], the dual irrep [3(κ̃)] of O(8) has highest weight [Y (κ)] with
components

Yσ (κ) = 3 − κ̃5−σ . (74)

The spectrum of the Hamiltonian Ĥ = −V̂ P
O6 is shown for the states with supermultiplet

symmetry {n4} and n = 1, . . . , 6 in figure 5.
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A richer spectrum could be given in the O(6) basis for any Hamiltonian of the form

Ĥ = −χ1V̂
P
O6 − χ2ĈO5 + χ3L̂ · L̂ (75)

where ĈO5 is the Casimir operator for O(5).

3.3. The U(5) chain

The duality between the U(5) ⊃ O(5) and O(8) ⊃ U(4) subgroup chains also implies that the
U(5) coupling scheme, defined by the chain of equation (58), diagonalizes a pairing interaction
V̂ P

O5, now restricted to (l = 2)L = 0 pairs whose spectrum is derived as follows.
First observe that the spectrum of U(5) irreps contained within a given U(6) irrep {�} is

given by the well-known branching rule [26]

U(6) ↓ U(5) × U(1) : {�} ↓
⊕
µm

��
µm{µ} × {m}, (76)

where the U(1) quantum number m is equal to the number ns of nucleons in the 2s single-
particle level. Thus, with � of maximum length 4 (so that �̃ is a U(4) irrep)

U(6) ↓ U(5) : {�} ↓
4⊕

m=0

⊕
µ

��
µm{µ}, (77)

where ��
µm is a Littlewood–Richardson coefficient. The spectrum of O(5) irreps within each

U(5) irrep is then determined by the O(8)↓ U(4) branching rules for N = 5 given in the
appendix.

Thus, for the O(5) pairing interaction we obtain

〈{µ}[ν]|V̂ P
O5|{µ}[ν]〉 =

∑
σ

[Yσ (ν)(Yσ (ν) + 8 − 2σ) − Xσ (µ)(Xσ (µ) + 2 − 2σ)], (78)

where

Yσ (ν) = 5
2 − ν5−σ , (79)

Xσ (µ) = µ̃σ − 5
2 . (80)

The spectrum of energy levels for the Hamiltonian Ĥ = −V̂ P
O5 is shown in figures 6–8.

It is interesting to note the identical spectra shown by these figures for different nuclei.
These symmetries arise because the O(5)-pairing Hamiltonian depends only on the Casimir
invariants of U(5) and its O(5) subgroup which take the same values for the irreps in the
corresponding nuclei. The identity between the ns = 0 energies of 4n and the ns = 4
energies of their 4(n + 1) neighbours is immediately understood from the symmetry of the
U(6) ↓ U(1) × U(5) branching rule of equation (76) which gives

U(6) ↓ U(1) × U(5) : {4n} ↓ {0} × {4n} ⊕ · · ·
: {4n+1} ↓ {4} × {4n} ⊕ · · · . (81)

The other symmetries can be understood in terms of particle–hole conjugation. First observe
that the fully antisymmetry irrep {15} of U(5) is one dimensional and corresponds to the
representation of an element g ∈ U(5) by its determinant, i.e., g → ε(g) = det(g). Similarly,
the fully closed-shell U(5) irrep {45} is the one-dimensional map g → [ε(g)]4. Now, a
state with n-nucleons added to the 2s1d-shell vacuum state can be identified with a state of
(24 − n)-holes added to the filled 2s1d-shell state. Thus, there is an equivalence of particle
and hole representations of U(5) given by

{µ1, µ2, µ3, µ4, µ5} ≡ ε4{5 − µ5, 5 − µ4, 5 − µ3, 5 − µ2, 5 − µ1}. (82)
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Figure 6. The energy-level spectra (relative to the ground-state energy) of O(5) multiplets with
{n4} supermultiplet symmetry, for ns = 0 and ns = 4. Observe that the excitation energies of the
nuclei with 4n + ns and 4(5 − n) + ns nucleons are identical and that the ns = 0 energies for 4n

nuclei are identical to the ns = 4 energies for 4(n + 1) nuclei.
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Figure 7. The energy-level spectra (relative to the ground-state energy) of O(5) multiplets with
{n4} supermultiplet symmetry, for ns = 1 and ns = 3. Observe that the excitation energies of the
nuclei with 4n and 4(6 − n) nucleons are identical.
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Figure 8. The energy-level spectra (relative to the ground-state energy) of O(5) multiplets with
{n4} supermultiplet symmetry, for ns = 2.

For example, the U(6) ↓ U(1) × U(5) branching rule of equation (76) gives

U(6) ↓ U(1) × U(5) : {42} ↓ {1} × {4, 3} ⊕ · · ·
: {44} ↓ {3} × {43, 1} ⊕ · · · (83)

and particle–hole conjugation gives

{43, 1} ≡ ε4{4, 3}. (84)

The factor ε4 does not affect the relative energies of states. Hence, it follows that the spectrum
of ns = 1 states of U(6) symmetry {42} (supermultiplet symmetry {24}) is identical to that of
the ns = 3 states of U(6) symmetry {44} (supermultiplet symmetry {44}).

A richer spectrum could also be obtained in the U(5) basis for any Hamiltonian of the
form

Ĥ = χ1V̂O5 + χ2n̂s + χ3(n̂)2
s + χ4L̂ · L̂ (85)

where n̂s is the number operator for nucleons in the 2s orbital.

4. Discussion

In this paper, we have proved a duality relationship between the irreps of the group O(N),
which can be used together with U(N) and the U(4) supermultiplet group to classify nuclear
states in LST -coupling, and those of the group O(8) generated by the L = 0 two-nucleon
pair-creation operators. Although such a duality relationship has long been suspected, from
the results of Bayman [10] and Flowers and Spzikowshi [7, 8], a complete proof has not, to
our knowledge, been given previously, although a proof that some of the conditions necessary
for a partial duality between SO(N) and SO(8) irreps has been given recently in [22].

As anticipated, such a duality relationship extends the well-known SU(2) quasispin-
symplectic and O(5)-symplectic dualities [6] that underlie the J = 0 pairing models in
jj -coupling to parallel L = 0 pairing models in LS-coupling.



Duality relationships and supermultiplet symmetry in the O(8) pair-coupling model 489

Duality of the O(N) and O(8) representations opens the door to tackling the longstanding
problem in nuclear physics of handling the competing dynamical symmetries involved for a
Hamiltonian with a mixture of a Q · Q and pairing interaction. The competition between
a Q · Q and a J = 0 pairing interaction is complicated by the fact that the J = 0 pairing
interaction generally involves a coupling between the spatial and spin degrees of freedom of
the nucleons, whereas both a Q · Q and an L = 0 pairing interaction preserve the dynamical
symmetries of the subgroup chain

U(4) × U(N) ⊃ SU(2)T × SU(2)S × SO(3)L ⊃ SU(2)J .

Moreover, in an LST -coupling scheme based on harmonic-oscillator spatial states,
intermediate subgroups can be inserted between U(N) and its SO(3)L subgroup, which
diagonalize different components of the interaction. For example, basis states which reduce
the U(N) ⊃ SU(3) ⊃ SO(3)L subgroups diagonalize the Q · Q interaction while basis
states which reduce the U(N) ⊃ O(N) ⊃ SO(3)L subgroups diagonalize an L = 0 pairing
interaction. As shown in the last section for the 2s1d shell, other intermediate subgroups can
also be invoked when N = ∑

k(2lk + 1) and the shell contains more than one single-particle
angular momentum lk . For example, if the shell contains two values of the single-particle
angular momentum and N = N1 + N2 with N1 = 2l1 + 1 and N2 = 2l2 + 1, then we also have
the subgroup chain

U(N) ⊃ U(N1) × U(N2) ⊃ O(N1) × O(N2) ⊃ SO(3)L1 × SO(3)L2 ⊃ SO(3)L, (86)

with L = L1 + L2.
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Appendix A. Tables of O(8) ↓ U (4) branching rules for 1 � N =
∑

k(2lk + 1) � 6

Table A1. The even- and odd-n U(4) irreps contained in the O(8) irreps for N = 2. The U(4)

irreps are labelled by {λ̃} and the O(8) irreps [1(κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃} {λ̃}
0 {0}
2 {12} {2} {12}
4 {14}, {22} {212} {14}, {212} {14}
6 {2212} {23} {2212}
8 {24}
[κ̃] [0] [2] [12] [14]

n {λ̃} {λ̃}
1 {1}
3 {13}, {21} {13}
5 {213}, {221} {213}
7 {231}
[κ̃] [1] [13]
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Table A2. The even- and odd-n U(4) irreps contained in the O(8) irreps for N = 3. The U(4)

irreps are labelled by {λ̃} and the O(8) irreps
[ 3

2 (κ̃)
]

simply by [κ̃].

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
0 {0}
2 {12} {2} {12}
4 {14}, {22} {212}, {31} {14}, {212}, {22} {212} {14}
6 {2212}, {32} {313}, {23}, {321} {2212}2, {321} {2212}, {313}, {23} {2212}
8 {24}, {3212} {3221}, {322} {24}, {3221}, {3212} {3221} {24}

10 {3222} {331} {3222}
12 {34}
[κ̃] [0] [2] [12] [212] [14]

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
1 {1}
3 {3} {13}, {21} {21} {13}
5 {312} {213}, {221}, {32} {213}, {221}, {312} {213}, {221} {213}
7 {322} {231}, {3212}, {321} {231}{3212}, {322} {231}, {3212} {231}
9 {33} {323}, {3221} {3221} {323}

11 {332}
[κ̃] [3] [1] [21] [13] [213]

Table A3. The even-n U(4) irreps contained in the O(8) irreps for N = 4. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [2(κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
0 {0}
2 {12} {2} {12}
4 {14}, {22} {4} {212}, {31} {14}, {212}, {22} {31}
6 {2212}, {32} {412} {313}, {23}, {321}, {42} {2212}2, {32}, {321} {313}, {412}, {321}
8 {42}, {3212}, {24} {422} {322}, {3221}, {4212}, {431} {24}, {3212}2, {431}, {3221} {322}, {4212}, {422}{3221}

10 {3222}, {4212} {432} {331}, {423}, {4321}, {422} {3222}2, {4212}, {4321} {331}, {432}, {4321}
12 {34}, {4222} {43} {4322}, {4231} {34}, {4322}, {4222} {4231}
14 {4232} {432} {4232}
16 {44}
[κ̃] [0] [4] [2] [12] [31]

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
0
2
4 {212} {22} {14}
6 {2212}, {313}, {23}, {321} {2212}, {321} {2212} {313} {23} {2212}
8 {4212}, {322}, {3212}, {3221}2 {422}, {3212}, {3221}, {24} {24}, {3212} {3221} {3221} {24}, {3221} {24}

10 {3222}, {331}, {423}, {4321} {3222}, {4321} {3222} {331} {423} {322}
12 {4322} {4222} {34}
14
16

[κ̃] [212] [22] [14] [313] [23] [2212] [24]
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Table A4. The odd-n U(4) irreps contained in the O(8) irreps for N = 4. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [2(κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃}
1 {1}
3 {13}, {21} {3} {21}
5 {32}, {221}, {213} {41}, {312} {32}, {312}, {221}, {213}
7 {43}, {321}, {3212}, {231} {421}, {322}, {413} {421}, {321}, {322}, {3212}2, {231}
9 {421}, {4312}, {3221}, {323} {432}, {4221}, {33} {432}, {4312}, {4221}, {3221}2, {323}

11 {4221}, {4322}, {332} {423}, {4321} {4221}, {4321}, {4322}, {332}
13 {433}, {4232} {431} {4232}
15 {433}
[κ̃] [1] [3] [21]

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
1
3 {13}
5 {221}, {213} {312} {221} {213}
7 {321}, {3212}, {231} {322}, {413}, {3212} {322}, {3212}, {231} {3212}, {231} {231}
9 {4312}, {3221}, {323} {4221}, {33}, {3221} {4221}, {3221}, {323} {3221}, {323} {323}

11 {4322}, {332} {4321} {4322} {332}
13 {433}
15

[κ̃] [13] [312] [221] [213] [231]

Table A5. The even-n U(4) irreps contained in the O(8) irreps for N = 5. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [ 5

2 (κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃} {λ̃}
0 {0}
2 {12} {12} {2}
4 {22}, {14} {22}, {212}, {14} {31}, {212} {4}
6 {32}, {2212} {32}, {321}, {2212}2 {42}, {321}, {23}, {313} {51}, {412}
8 {42}, {3212}, {24} {42}, {431}, {3212}2, {3221}, {24} {53}, {431}, {322}, {4212}, {3221} {521}, {422}, {513}

10 {52}, {4212}, {3222} {541}, {4212}2, {4321}, {3222}2 {541}, {5312}, {422}, {4321}, {423}, {331} {532}, {5221}, {432}
12 {5212}, {4222}, {34} {5212}, {5421}, {4222}2, {4322}, {34} {522}, {5421}, {5322}, {4231}, {4322} {543}, {5321}, {43}
14 {5222}, {4232} {5222}, {5432, {4232}2 {5231}, {5432}, {533}, {432}, {4231} {524}, {5421}
16 {5232}, {44} {5232}, {5423}, {44} {542}, {5423} {531}
18 {5242} {5242} {533}
20 {54}
[κ̃] [0] [12] [2] [4]

n {λ̃} {λ̃}
0
2
4 {31} {22}
6 {42}, {412}, {321}, {313} {32}, {321}, {2212}
8 {521}, {431}, {422}, {322}, {4212}2, {3221} {431}, {422}, {3212}2, {3221}, {24}

10 {532}, {422}, {432}, {5312}, {5221}, {4321}, {331}, {423} {532}, {4212}, {4321}2, {3222}2

12 {543}, {5421}, {5321}, {5322}, {4231}, {4322} {5421}, {5321}, {4222}2, {4322}, {34}
14 {5231}, {5421}, {5432}, {432} {5222}, {5432}, {4232}
16 {5242} {5232}
18
20

[κ̃] [31] [22]
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n {λ̃} {λ̃}
4 {212} {14}
6 {321}, {23}, {313}, {2212} {2212}
8 {431}, {322}, {4212}, {3212}, {3221}2 {3312}, {24}

10 {422}, {5312}, {4212}, {4321}2, {331}, {423}, {3222} {4212}, {3222}
12 {5421}, {5322}, {4231}, {4222}, {4322}2 {4222}, {34}
14 {5421}, {5322}, {432}, {4232} {4232}
16 {5423} {44}
[κ̃] [212] [14]

n {λ̃} {λ̃} {λ̃} {λ̃}
0
2
4
6 {412} {321} {23} {313}
8 {422}, {513}, {4212} {422}, {322}, {3212}, {3221}, {4212} {322}, {3221} {4212}, {3221}

10 {432}, {5221}, {4321} {432}, {5221}, {4321}2, {331}, {423}, {3222} {4321}, {331}, {423} {4321}, {331}, {423}
12 {5321}, {43}, {4231} {5321}, {5322}, {4222}, {4322}, {4231} {5322}, {4322} {4231}, {4322}
14 {5421} {5432} {533} {432}
16
18
20

[κ̃] [412] [321] [23] [313]

n {λ̃} {λ̃} {λ̃}
0
2
4
6 {2212}
8 {3212}, {3221}, {24} {3221} {24}

10 {4321}, {3222}2 {331}, {423}, {3222} {3222}
12 {4222}, {4322}, {34} {4322} {34}
14 {4232}
16
18
20

[κ̃] [2212] [3221] [24]

Table A6. The odd-n U(4) irreps contained in the O(8) irreps for N = 5. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [ 5

2 (κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃}
1 {1}
3 {21}, {13} {3} {13}
5 {32}, {221}, {213} {41}, {312} {221}, {213}
7 {43}, {321}, {3212}, {231} {52}, {421}, {322}, {413} {321}, {3212}, {231}
9 {54}, {421}, {4312}, {3221}, {323} {531}, {432}, {33}, {5212}, {4221} {421}, {4312}, {3221}, {323}

11 {521}, {5412}, {4221}, {4322}, {332} {542}, {5321}, {523}, {423}, {4321} {5412}, {4221}, {4322}, {332}
13 {5221}, {5422}, {4232}, {433} {523}, {5431}, {5322}, {431} {5422}, {4232}, {433}
15 {5232}, {5432}, {433} {5241}, {5422} {5432}, {433}
17 {5243}, {543} {532} {543}
19 {534}
[κ̃] [1] [3] [13]
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n {λ̃} {λ̃} {λ̃}
1
3 {21}
5 {312}, {32}, {221}, {213} {5} {41}
7 {43}, {321}, {421}, {322}, {3212}2, {231} {512} {512}, {421}, {413}
9 {531}, {421}, {432}, {4312}2, {4221}, {3221}2, {323} {522} {522}, {432}, {5212}, {4221}

11 {542}, {5412}, {5321}, {4221}2, {4321}, {4322}2, {332} {532} {532}, {5321}, {423}, {4321}
13 {5221}, {5422}, {5431}, {5322}, {4232}2, {433} {542} {542}, {5431}, {431}
15 {5422}, {5232}, {5432}, {433} {53} {5241}
17 {5243}
19

[κ̃] [21] [5] [41]

n {λ̃} {λ̃}
1
3
5 {32} {312}
7 {421}, {321}, {3212} {421}, {322}, {413}, {3212}
9 {522}, {432}, {4312}, {4221}, {3221}, {323} {432}, {33}, {5212}, {4312}, {4221}2, {3221}

11 {532}, {5321}, {4221}, {4321}, {4322}, {332} {5321}, {523}, {423}, {4221}, {4321}2, {4322}
13 {5431}, {5422}, {4232} {5431}, {5322}, {431}, {4232}
15 {5232} {5422}
17
19

[κ̃] [32] [312]

n {λ̃} {λ̃}
1
3
5 {221} {213}
7 {321}, {322}, {3212}, {231} {3212}, {231}
9 {432}, {4312}, {4221}, {3221}2, {323} {4312}, {3221}, {323}

11 {5321}, {4221}, {4321}, {4322}2, {332} {4221}, {4322}, {332}
13 {5422}, {5322}, {4232}, {433} {4232}, {433}
15 {5432} {433}
17
19

[κ̃] [221] [213]

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
1
3
5
7 {322} {413} {3212} {231}
9 {33}, {4221}, {3221} {4221} {4221}, {3221}, {323} {3221}, {323} {323}

11 {523}, {4321}, {4322} {4321} {4321}, {4322}, {332} {4322}, {332} {332}
13 {5322} {431} {4232} {433}
15
17
19

[κ̃] [322] [413] [231] [332] [323]
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Table A7. The even-n U(4) irreps contained in the O(8) irreps for N = 6. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [3(κ̃)] simply by [κ̃].

n {λ̃} {λ̃} {λ̃} {λ̃}
0 {0}
2 {12} {12}
4 {22}, {14} {22}, {212}, {14}
6 {32}, {2212} {6} {32}, {321}, {2212}2 {51}
8 {42}, {3212}, {24} {612} {42}, {431}, {3212}2, {3221}, {24} {612}, {521}, {513}

10 {52}, {4212}, {3222} {622} {52}, {541}, {4212}2, {4321}, {3222}2 {622}, {532}, {6212}, {5221}
12 {62}, {5212}, {4222}, {34} {632} {651}, {5212}2, {5421}, {4222}2, {4322}, {34} {632}, {6321}, {543}, {5321}
14 {6212}, {5222}, {4232} {642} {6212}, {6521}, {5222}2, {5432}, {4232}2 {642}, {6431}, {524}, {5421}
16 {6222}, {5232}, {44} {652} {6222}, {6532}, {5232}2, {5423}, {44} {652}, {6541}, {531}
18 {6233}, {5242} {63} {6233}, {6543}, {5242}2 {6251}
20 {6242}, {54} {6242}, {54}
22 {6252} {6252}
24 {64}
[κ̃] [0] [6] [12] [51]

n {λ̃} {λ̃}
2 {2}
4 {31}, {212} {4}
6 {42}, {321}, {23}, {313} {51}, {412}
8 {53}, {431}, {322}, {4212}, {3221} {62}, {521}, {422}, {513}

10 {64}, {541}, {422}, {5312}, {4321}, {331}, {423} {631}, {532}, {432}, {6212}, {5221}
12 {651}, {6412}, {522}, {5421}, {5322}, {4231}, {4322} {642}, {6321}, {543}, {43}, {5321}, {623}
14 {622}, {6521}, {6422}, {5231}, {5432}, {533}, {432} {653}, {6431}, {6322}, {524}, {5421}
16 {6231}, {6532}, {6432}, {5242}, {5423} {624}, {6541}, {6422}, {531}
18 {6242}, {6543}, {643}, {533} {6251}, {6522}
20 {6253}, {6524} {632}
22 {634}
[κ̃] [2] [4]

n {λ̃}
4 {31}
6 {42}, {412}, {321}, {313}
8 {53}, {521}, {431}, {422}, {322}, {4212}2, {3221}

10 {631}, {541}, {532}, {422}, {432}, {5312}2, {5221}, {331}, {423}, {4321}2

12 {642}, {6412}, {522}, {5321}, {5322}2, {4231}2, {4322}, {6321}, {543}, {5421}2

14 {653}, {6521}, {6431}, {6422}, {6322}, {5231}2, {5421}, {533}, {432}, {5432}2

16 {6231}, {6541}, {6532}, {6422}, {6432}, {5242}2, {5423}
18 {6242}, {6522}, {6543}, {533}
20 {6253}
[κ̃] [31]

n {λ̃} {λ̃}
4 {22}
6 {32}, {321}, {2212} {42}
8 {42}, {431}, {422}, {3212}2, {3221}, {24} {521}, {431},{4212}

10 {541}, {532}, {4212}2, {4321}2, {3222}2 {622}, {5221}, {422}, {532}, {5312}, {4321}, {423}
12 {642}, {5212}, {5421}2, {5321}, {4222}3, {4322}, {34} {632}, {6321}, {543}, {5421}, {5321}, {4231}, {5322}, {4322}
14 {6521}, {6431}, {5222}2, {5432}2, {4232}2 {642}, {5421}, {6422}, {6431}, {5231}, {5432}, {432}
16 {6222}, {6532}, {6422}, {5232}2, {44} {6541}, {6532}, {5242}, {5423}
18 {6232}, {6543}, {5242} {6242}
20 {6242}
[κ̃] [22] [42]
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n {λ̃} {λ̃}
4 {14}
6 {2212}
8 {3212}, {24} {513}

10 {4212}, {3222} {5221}
12 {5212}, {4222}, {34} {5321}
14 {5222}, {4232} {5421}
16 {5232}, {44} {531}
18 {5242}
20 {54}
[κ̃] [14] [513]

n {λ̃}
6 {321}
8 {431}, {422}, {322}, {4212}, {3212}, {3221}

10 {532}, {422}, {432}, {5312}, {4212}, {5221}, {4321}3, {331}, {423}, {3222}
12 {6321}, {543}, {5421}2, {5321}2, {5322}2, {4231}2, {4222}2, {4322}2

14 {6431}, {6422}, {6322}, {5231}, {5222}, {5421}, {5432}3, {533}, {432}, {4232}
16 {6532}, {6422}, {6432}, {5242}, {5232}, {5423}
18 {6543}
[κ̃] [321]

n {λ̃}
4 {212}
6 {321}, {23}, {313}, {2212}
8 {431}, {322}, {4212}, {3212}, {3221}2

10 {541}, {422}, {5312}, {4212}, {4321}2, {331}, {423}, {3222}
12 {522}, {6412}, {5212}, {5421}2, {4231}, {5322}, {4222}, {4322}2

14 {6521}, {6422}, {5231}, {5222}, {5432}2{533}, {432}, {4232}
16 {6532}, {6432}, {5242}, {5232}, {5423}2

18 {6543}, {643}, {533}, {5242}
20 {6524}
[κ̃] [212]

n {λ̃}
4
6 {412}
8 {521}, {422}, {513}, {4212}

10 {532}, {432}, {6212}, {5312}, {5221}2, {4321}
12 {6321}, {543}, {43}, {5421}, {5321}2, {4231}, {5322}, {623}
14 {6431}, {6322}, {524}, {5231}, {5421}2, {5432}
16 {6541}{6422}{531}, {5242}
18 {6522}
20

[κ̃] [412]
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n {λ̃}
6 {32}
8 {431}, {3212}

10 {532}, {4212}, {4321}, {3222}
12 {632}, {5421}, {5321}, {4222}, {4322}, {34}
14 {6431}, {5222}, {5432}, {4232}
16 {6532}, {5232}
18 {6232}
[κ̃] [32]

n {λ̃} {λ̃}
6 {23}
8 {322}, {3221} {422}

10 {422}, {4321}, {331}, {423} {432}, {5221}, {4321}
12 {5421}, {5322}, {4231}, {4322} {623}, {43}, {5321}, {5322}, {4231}, {4222}
14 {6422}, {5432}, {533}, {432} {6322}, {5421}, {5432}
16 {6432}, {5423} {6422}
18 {643}
[κ̃] [23] [422]

n {λ̃} {λ̃} {λ̃}
6 {2212} {313}
8 {3212}, {3221}, {24} {4212}, {3221} {4212}

10 {4212}, {4321}, {3222}2 {5312}, {4321}, {423}, {331} {5221}, {4321}, {423}
12 {5421}, {4222}2, {4322}, {34} {5421}, {5322}, {4231}, {4322} {5321}, {5322}, {4231}, {4322}
14 {5222}, {5432}, {4232}2 {5231}, {5432}, {432}, {533} {5421}, {5432}, {432}
16 {5232}, {5423}, {44} {5242}, {5423} {5242}
18 {5242} {533}
[κ̃] [2212] [313] [4212]

n {λ̃} {λ̃} {λ̃} {λ̃} {λ̃}
8 {322} {3212} {3221} {24}

10 {432}, {4321}, {331} {4321}, {3222} {4321}, {331}, {423}, {3222} {3222} {423}
12 {5321}, {4231}, {5322}, {4322} {5321}, {4222}, {4322}, {34} {4231}, {5322}, {4222}, {4322}2 {4222}, {34} {4322}
14 {6322}, {5432}, {533} {5432}, {4232} {5432}, {533}, {432}, {4232} {4232} {432}
16 {6432} {5232} {5423} {44}
[κ̃] [322] [3212] [3221] [24] [423]

n {λ̃} {λ̃} {λ̃}
8

10 {331} {3222}
12 {4322} {4322}, {34} {34}
14 {533} {4232}
16

[κ̃] [331] [3222] [34]
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Table A8. The odd-n U(4) irreps contained in the O(8) irreps for N = 6. The U(4) irreps are
labelled by {λ̃} and the O(8) irreps [3(κ̃)] simply by [κ̃].

n {λ̃} {λ̃}
1 {1}
3 {13}, {21}
5 {32}, {221}, {213} {5}
7 {43}, {321}, {3212}, {231} {61}, {512}
9 {54}, {421}, {4312}, {3221}, {323} {621}, {522}, {613}

11 {65}, {521}, {5412}, {4221}, {4322}, {332} {632}, {532}, {6221}
13 {621}, {6512}, {5221}, {5422}, {4232}, {433} {643}, {6321}, {542}
15 {6221}, {6522}, {5232}, {5432}, {433} {654}, {6421}, {53}
17 {6232}, {6532}, {5243}, {543} {625}, {6521}
19 {6243}, {6542}, {534} {631}
21 {653}, {6254}
23 {635}
[κ̃] [1] [5]

n {λ̃} {λ̃}
1
3 {13}
5 {221}, {213}
7 {321}, {3212}, {231} {512}
9 {421}, {4312}, {3221}, {323} {522}, {613}, {5212}

11 {521}, {5412}, {4221}, {4322}, {332} {532}, {6221}, {5321}
13 {6512}, {5221}, {5422}, {4232}, {433} {6321}, {542}, {5431}
15 {6522}, {5232}, {5432}, {433} {6421}, {53}, {5241}
17 {6532}, {5243}, {543} {6521}
19 {6542}, {534}
21 {653}
23

[κ̃] [13] [512]

n {λ̃}
3 {3}
5 {41}, {312}
7 {52}, {421}, {322}, {413}
9 {63}, {531}, {432}, {33}, {5212}, {4221}

11 {641}, {542}, {423}, {6312}, {5321}, {4321}, {523}
13 {652}, {6421}, {6322}, {523}, {5431}, {5322}, {431}
15 {623}, {6531}, {6432}, {633}, {5241}, {5422}
17 {6241}, {6542}, {6423}, {532}
19 {6252}, {6523}
21 {633}
[κ̃] [3]
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n {λ̃}
3 {21}
5 {32}, {312}, {221}, {213}
7 {43}, {421}, {321}, {322}, {3212}2, {231}
9 {54}, {531}, {421}, {432}, {4312}2, {4221}, {3221}2, {323}

11 {641}, {521}, {542}, {5412}2, {5321}, {4221}2, {4321}, {4322}2, {332}
13 {652}, {6512}, {6421}, {5221}2, {5431}, {5422}2, {5322}, {4232}2, {433}
15 {6221}, {6531}, {6522}, {6432}, {5232}2, {5422}, {5432}2, {433}
17 {6232}, {6542}, {6532}, {6423}, {5243}2, {543}
19 {6243}, {6523}, {6542}, {534}
21 {6254}
[κ̃] [21]

n {λ̃}
5 {41}
7 {52}, {512}, {421}, {413}
9 {621}, {531}, {522}, {432}, {5212}2, {4221}

11 {632}, {542}, {532}, {423}, {6312}, {6221}, {5321}2, {4321}, {523}
13 {643}, {6421}, {6321}, {6322}, {523}, {542}, {5431}2, {5322}, {431}
15 {654}, {6531}, {6421}, {6432}, {5241}2, {5422}
17 {6241}, {6521}, {6542}, {532}
19 {6252}
[κ̃] [41]

n {λ̃}
5 {32}
7 {43}, {421}, {321}, {3212}
9 {531}, {421}, {522}, {432}, {4312}2, {4221}, {3221}, {323}

11 {632}, {542}, {532}, {5412}, {5321}2, {4221}2, {4321}, {4322}2, {332}
13 {643}, {6421}, {6321}, {5221}, {5431}2, {5422}2, {5322}, {4232}2, {433}
15 {6531}, {6522}, {6421}, {6432}, {5232}2, {5422}, {5432}, {433}
17 {6232}, {6542}, {6532}, {5243}
19 {6243}
[κ̃] [32]

n {λ̃}
5 {221}
7 {321}, {322}, {3212}, {231}
9 {421}, {432}, {4312}, {4221}, {3221}2, {323}

11 {542}, {5412}, {5321}, {4221}2, {4321}, {4322}2, {332}
13 {6421}, {5221}, {5431}, {5422}2, {5322}, {4232}2, {433}
15 {6522}, {6432}, {5232}, {5422}, {5432}2, {433}
17 {6532}, {6423}, {5243}, {543}
19 {6542}
[κ̃] [221]
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n {λ̃}
5
7 {421}
9 {522}, {432}, {5212}, {4312}, {4221}

11 {532}, {423}, {6221}, {5321}2, {4221}, {4321}, {523}, {4322}
13 {6321}, {6322}, {542}, {5431}2, {5422}, {5322}, {431}, {4232}
15 {6421}, {6432}, {5241}, {5232}, {5422}
17 {6542}
19

[κ̃] [421]

n {λ̃} {λ̃}
5 {213}
7 {3212}, {231} {413}
9 {4312}, {3221}, {323} {5212}, {4221}

11 {5412}, {4221}, {4322}, {332} {5321}, {4321}, {523}
13 {5221}, {5422}, {4232}, {433} {5431}, {5322}, {431}
15 {5232}, {5432}, {433} {5241}, {5422}
17 {5243}, {543} {532}
19 {534}
[κ̃] [213] [413]

n {λ̃}
5 {312}
7 {421}, {322}, {413}, {3212}
9 {531}, {432}, {33}, {5212}, {4312}, {4221}2, {3221}

11 {542}, {423}, {6312}, {5412}, {5321}2, {4221}, {4331}2, {523}, {4322}
13 {6421}, {6322}, {523}, {5221}, {5431}2, {5422}, {5322}2, {431}, {4232}
15 {6531}, {6432}, {633}, {5241}, {5232}, {5422}2, {5432}
17 {6542}, {6423}, {532}, {5243}
19 {6523}
[κ̃] [312]

n {λ̃} {λ̃}
7 {321} {322}
9 {432}, {4312}, {3221} {432}, {33}, {4221}, {3221}

11 {532}, {5321}, {4221}, {4321}, {4322}{332} {423}, {5321}, {4221}, {4321}2, {523}{4322}
13 {6321}, {5431}, {5422}, {5322}, {4232}, {433} {6322}, {5431}, {5422}, {5322}2, {431}, {4232}
15 {6432}, {5232}, {5432} {6432}, {633}, {5422}, {5432}
17 {6532} {6423}
[κ̃] [321] [322]

n {λ̃} {λ̃} {λ̃}
7 {3212} {231}
9 {4312}, {4221}, {3221}, {323} {3221}, {323} {4221}

11 {5321}, {4221}, {4321}, {4322}2, {332} {4221}, {4322}, {332} {4321}, {523}, {4322}
13 {5431}, {5422}, {5322}, {4232}2, {433} {5422}, {4232}, {433} {5322}, {431}, {4232}
15 {5232}, {5422}, {5432}, {433} {5432}, {433} {5422}
17 {5243} {543}
[κ̃] [3212] [231] [4221]
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n {λ̃} {λ̃} {λ̃} {λ̃}
9 {33} {3221} {323}

11 {4321} {4321}, {4322}, {332} {4322}, {332} {332}
13 {5322} {5322}, {4232}, {433} {4232}, {433} {433}
15 {633} {5432} {433}
[κ̃] [33] [3221] [323] [332]
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